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Abstract 

The overview presents the most important and recent issues regarding the modelling and the control of the 
aerobic bioprocess. First part is dedicated to the discussion about instruments and techniques for bioprocess 
variables determination and monitoring: (a) the standard direct physical determinations: temperature, pressure 
(over pressure), agitator shaft power and rate of stirring, foam, gas and liquid flow, weight; (b) the regular 
chemical determinations: pH, redox potential, dissolved oxygen concentration, exit-gas analysis, on-line 
analysis of other chemical factors (ion-specific sensors, enzyme electrodes, microbial electrodes, mass 
spectrometers, fluorimeters). In the second part the mathematical modelling of the aerobic bioprocess is 
presented with several types of models: unstructured global models; structured models; segregated models; 
metabolic modelling. The bioprocess control has different goals and objectives, function of bioprocess 
characteristics and imposed performances. A case study based on authors’ original research presents the 
bioprocess modelling and the intelligent structure design to control the fed batch cultivation of Hansenula 
polymorpha CBS-4732 yeast for alcoholoxidase-containing cellular mass.  
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Introduction  

The bioprocess advancement is determined by the 
living cells capabilities and characteristics, the 
bioreactor performance as well as by the 
cultivation media composition and the main 
parameters evolution. The high metabolic network  

 

complexity inside the cells often determine very 
sophisticated, non-linear growth and product 
formation kinetics, with further consequences on 
the bioprocess behavior, but at the same time on 
the product quality and yield. 
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The key issue of this rather complicated situation is 
the use of modeling and further on of computer 
assisted control as a powerful tool for bioprocess 
improving (Chirvase, 2007). 

The process models, as relationships of the input, 
output and inner variables, though incomplete and 
simplified, can be effective to describe the 
phenomena and the influences of great importance 
for control, optimization and better theoretical 
knowledge. The function of any biological model 
is to describe the metabolic reactions rates and 
their stoichiometry on the basis of bioreactor 
conditions, with the main difficulties-the 

identification of principal factors affecting cellular 
growth and bioproduct formation, and the building 
up of a suitable model structure for the intracellular 
processes. Moreover the scheduling, supervision 
and automatic control in modern bioprocessing is 
done by advanced process control systems, where 
all the functions are implemented in software (in 
accordance with the Figure 1).  

The main bioprocess control attributes are: 
handling of off-line analyses; recipe and 
scheduling; high level overall control; state and 
parameters estimation; simulation; prediction; 
optimization.

  
Figure 1. General presentation of the computerized bioprocess control  (Bellgardt, 2000) 
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For the industrial developments the central and 
manifold objective of the computer control is the 
realization of the economic interests in assuring 
high operational stability, process reproducibility 
and increased product yield together with the 
maintaining of rigorous safety and the 
implementation of the GMP or environmental 
regulations, important requests in modern 
biomanufacture imposed by the product quality 
improving needs. 

 

Materials and methods 

To achieve the biological potential of cells, the 
optimal environmental conditions must be 
maintained in the bioreactor for cell growth / 
product formation, at least with regard to the key 
parameters. Generally speaking, biological systems 
are influenced by different process variables, 
which have a direct influence on cell metabolism. 
Sensors for these variables are (typically) inserted 
into specially designed ports on the bioreactor. As 
bioreactors increase in size (i.e. in the industry 
field), the mixing problems become usual and 
probe location becomes problematic. To accurately 
outline large fermenters, probes may be collected 
from several locations. 

 

The mathematical modeling of the aerobic 
bioprocess 

The aerobic bioprocess modeling is an useful tool 
to accomplish several important tasks (Bellgardt, 
2000): (a) it can be the basis for adequate 
optimization and control technique applications; 
(b) it can provide the necessary information about 
the features of the chosen bioprocessing system; 
(c) it synthesizes the characteristics of the specified 
living cells’ evolution and hence, it is the best 
technique to predict the process efficiency. The 
models show the complex biosystems attributes; so 
they must be as possible as extensive and non-
speculative. Moreover the models are an 
acceptable compromise between the presentation 
of processes in detail, with considerable number of 
parameters, and the use of few parameters, easy to 
apply and estimate. 

Most important properties of a biological 
mathematical model were defined in the Edwards 
and Wilke’ postulates (Bellgardt, 2000): (a) it is 
capable to represent all the culture phases; (b) it is 
flexible enough to approximate different data types 
without the insertion of significant distortions; (c) 
it must be continuously derivable; (d) it must be 
easy to operate, once the parameters evaluated; (e) 
each model parameter is to have a physic 
significance and must be easy to evaluate. The 
attempts to realize high global models were not 
successful: firstly, due to the impossibility to 
measure on-line the great number of bioprocess 
parameters, and secondly, due to the high degree of 
complexity. Finally several types of models can 
represent the evolution of the aerobic bioprocess. 
The most important categories will be presented 
further on. 

 

1. The unstructured global models are in use 
nowadays as the main tool for both the bioprocess 
modeling, but also for being applied in overall 
computer control (Schugerl, 1991). Their limit is 
they are a simplified representation of the 
bioprocess behavior: conforming to this concept 
the bioprocess evolution depends directly and only 
on the macroscopic variables representing the 
working conditions in the bioreactor. Therefore the 
unstructured models are essentially kinetic 
equations that describe the variation of substrate or 
product concentrations and of a unique biological 
state variable-the cell concentration, and can also 
express the influences of some important process 
variables (pH, pO2, temperature, and others), and 
only sometimes they are balance equations. 

Generally speaking, one considers that the specific 
growth rate (Bastin et al., 1990) 

(μ =
1
X

dX
dt

) 

 
is the key variable for cell growth, substrate 
consumption and product formation. The specific 
growth rate is time dependent and dependent on 
different physical, chemical and/or biological 
parameters (substrate concentration-S, cell 
concentration-X, product concentration-P, pH, 
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temperature-T, dissolved oxygen concentration-C, 
and different inhibitors-I). Conforming to the 
literature assumptions (Bastin et al., 1990), the 
specific growth rate dependence upon different 
process parameters can be considered as follows:  

 
( )tICpHPXSf ,....,,,,,,=μ  (1) 

 
a) μ=μ(S) Kinetic models with growth limitation 

through substrate concentration (without 
inhibition) (Bellgardt, 1991, 2000)  

b) μ=μ(X, S) The influence of cell and substrate 
concentrations upon the specific growth rate 
(Bellgardt, 1991, 2000) 

c) Growth kinetics with substrate inhibition: In 
most cases, the kinetic model equations are derived 
(like the Monod model) from the inhibition theory 
of enzymatic reactions. Consequently they are not 
generally valid and can be applied in connection 
with experimental acceptability (Bellgardt, 1991, 
2000). 

d) μ = f (S, P) Growth kinetic with product 
inhibition (Bellgardt, 1991, 2000)  Hinshelwood 
(Hinshelwood, 1946) detected product inhibition 
influences upon the specific growth rate: linear 
decrease, exponential decrease, growth sudden 
stop, and linear/exponential decrease in 
comparison with a threshold value of P.  

g) μ (S1, S2) Kinetic models based on different 
substrates Besides the case when the dissolved 
oxygen is considered as a second substrate, there 
are many cases when two or more carbon sources 
are taken into consideration. There are two typical 
situations: (1) the cells grow through the sequential 
(consecutive) substrate consumption (diauxic 
growth), where a simple Monod model can be 
applied; (2) the cells grow through the 
simultaneous consumption of substrates (e.g. 
wastewater treatment); in this case, the 
mathematical modeling is more complex. 

h) Unstructured kinetic models for product 
formation: The product formation kinetic is taken 
into account in conjunction with the growth 
kinetic. Nowadays, the Gaden (Schugerl, 1991) 

classification is still useful. Based on this 
categorizing, four kinetic types can be defined: 

Type 0: This production type occurs even in resting 
cells that use only a little substrate for their own 
metabolism. The microbial cells function only as 
enzyme carriers. Some examples are provided by 
steroid transformation and vitamin E synthesis by 
Saccharomyces cerevisiae. 

Type 1: Type-1 situations include processes in 
which product accumulation is directly associated 
with growth; in this case the product formation is 
linked to the energy metabolism. Examples include 
fermentation to produce alcohol and gluconic acid 
and situations in biological wastewater treatment. 

Type 2: Type-2 bioprocesses include fermentations 
in which there is no direct connection between 
growth and product formation (for example, 
penicillin and streptomycin synthesis). 

Type 3: This production type includes those having 
a partial association with growth and thus, an 
indirect link to energy metabolism (e.g. citric acid 
and amino acid production) 

Afterward there are now more advanced models, 
the structured and the segregated models. 

2. In case of the structured models  the biotic 
phase is not any more viewed as a homogenous 
component, but they provide information about the 
physiological state of the cells, their composition 
and regulatory adaptation to the environment 
(Boudreau et al., 2006; Henzle et al., 2006). 
Conforming to this concept the cell mass is 
structured in several intracellular compounds and 
functional groups, which are connected to each 
other and to the environment by fluxes of material 
and information. The structured models can be: 
multi compartment models, genetically structured 
models, and biochemical structured models. 

3. The segregated models  can describe more 
complex phenomena like: alterations or 
disturbances in the physiology and cell 
metabolism; cells ‘morphological differentiation; 
genome mutations; spatial segregations of growth 
regions; cells aggregation; mixed cultures 
(including the competition between two or more 
species for the same substrate) (Boudreau et al., 
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2006; Henzle et al., 2006). On the contrary the 
unstructured and structured models have the limit 
to consider a homogenous population of cells and 
only one species in the bioreactor. The segregated 
models can be built by using ordinary differential 
equations to describe the behavior of several 
classes of independent/correlated cells. Each cell 
class behavior can be described by both 
unstructured and structured models. 

Aerobic bioprocess control 

The bioprocess control has different goals and 
objectives, function of bioprocess characteristics 
and imposed performances. In spite of high non-
linearity linear control theory and basic controllers 
(on/off, PID) are still applied in most industrial 
applications.  

More sophisticated control should rely on models 
able to correctly represent the biosystems behavior. 
Due to the complexity of the biological systems, 
basic models, which are nice to use and help to 
simplify the underlying mathematics, are not able 
to reflect the real situations. The large sets of 
parameters from the complex models need to be 
experimentally identified, and consequently the 
experiments should be carefully designed to 
provide this valuable information. Taking into 
account the time-to-market, which must be as short 
as possible the accepted control solution could be 
suboptimal based on classical robust control. 
Bioprocess reproducibility and living cell systems 
variability reduction from run to run is to be 
carefully studied. The media composition 
optimization and the successful application of PAT 
(process analytical technologies combining the 
techniques for in-process monitoring, data-based 
modeling process control) will contribute to the 
quality of production improvement. 

In bioindustry, bioprocesses are subject to a 
number of local and / or supervisory control 
structures. Local controllers are used to get the set-
point control of different physical / chemical 
parameters (e.g. temperature, pH and dissolved 
oxygen concentration), while supervisory control is 
necessary for optimizing the feed in a fed batch 
process or the dilution rate in a continuous one. 

I. Bioprocess control with a priori model (model 
based process control)  

The bioprocess control based on a priori model 
(BCAPM) can be seen as the on-line application of 
optimal control, where control actions are regularly 
re-calculated based on a global process model and 
process information (Brosilow et al., 2002). The 
global model is used to calculate optimal control 
actions by a prediction of future outputs over a 
limited time horizon. The basic concepts of 
BCAPM consider two main ideas (Ryckaert et al., 
1998, Wouwer et al., 2005): (1) the explicit use of 
an a priori model to predict the process output(s); 
(2) the calculation of the future control actions by 
minimizing a global objective function. 

The problem can be solved in different ways: (a) 
for a linear, time-invariant model, and in the 
absence of constraints, an explicit analytic solution 
of the above optimization problem can be 
obtained; (b) with linear constraints, the above 
optimization problem is a Quadratic-Programming 
problem, which can be numerically solved; (c) in 
the presence of a nonlinear model or nonlinear 
constraints, a non-convex optimization problem 
must be solved at each sampling period. So 
iterative optimization algorithms, (e.g. the Nelder-
Mead method) can be used in order to converge to 
local minima. 

Recent developments in on-line measurement 
techniques, parameter and state estimation, in 
addition to the search of improved quality control, 
motivated the development of BCAPM. Now the 
technique was upgraded with better results. For 
instance (Dunn et al., 2003) the applied BCAPM 
for feed control in the production of monoclonal 
antibodies allows to improve the yield with 43%.  

 

II. Bioprocess adaptive control 

When the process characteristics change during 
time, the operation conditions must also be 
changed: controller parameters and set point 
values. Moreover, optimal bioprocess evolution is 
commonly determined off-line, the process 
conditions are not perfectly known, and the process 
model is not well defined. Furthermore, it can be a 
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lot of changes in process conditions in conjunction 
with different microorganisms’ life cycles (when 
the cell concentration increase in time in a batch 
bioprocess, the oxygen set point must be 
increased). Hence, there is a need for some 
feedback mechanisms based on on-line 
measurements. On-line adaptation is possible when 
the state variables can be measured online 
(Galvanauskas et al., 2004) (directly using 
hardware sensors or indirectly by soft sensors). 
The adaptive control structures are based on the 
design of different estimation algorithms which are 
able to determine the off-line parameter values. 
Many control algorithms were developed based on 
minimal knowledge about bioprocess kinetics (the 
minimal modeling concept) (Dunn et al., 2003; 
Jadot et al., 1998, Lant et al., 2004, Kay, 2006).  

There are two classes of adaptive control (where 
the adaptation is attained on the basis of on-line 
parameter observers) (Dunn et al., 2003): (1) the 
process changes can be measured – therefore it is 
possible to systematically adjust the controller 
settings, based on the measured / anticipated 
bioprocess changes; (2) the process changes cannot 
be measured / predicted – hence the controller 
settings are automatically adjusted by a loop 
optimizer. 

III. Bioprocess control using Artificial Intelligence 
(AI)  

The limitations of the bioprocess control systems 
do not concern only the measurements or models, 
but at the same time much valuable human 
knowledge is only available in a qualitative 
heuristic form. Hence, it has been found that the 
knowledge-based control structures using the 
human decisional factor (i.e. a subjectively 
element) offer sometimes better results.  

Moreover, the computer performances are 
developed in the detriment of the general 
knowledge concerning life phenomena and do not 
promote advanced comprehension upon the 
metabolic routes of bioprocesses.  

Consequently, the intelligent techniques (i.e. neural 
nets, fuzzy structures, genetic algorithms or expert 
systems) are capable of simulating human expert-
like reasoning and decision making, dealing with 

uncertainties and imprecise information (Jadot et 
al., 1998).  

As the human perception about the bioprocess is 
commonly altered by the psychological factors, the 
intelligent control systems founded (only) on the 
human subjective knowledge is less valuable than 
the control systems who utilize the objective 
information fitted by a conceptual model.  

Hence, the literature recommends the intelligent 
control techniques utilization only if the control 
structure based on quantitative models fails.  

Frequently, different process parameters are 
controlled in order to follow predefined transitory 
trajectories. Such control strategies can be 
designed by a trial-and-error approach in 
combination with operator's experience and 
statistical analysis of historic data.  

 

Results. A Case Study  

The research objective of this case study was to 
develop an appropriate control method for a 
bioprocess and to implement it on a laboratory 
plant, namely the control of the fed batch 
cultivation of Hansenula polymorpha yeast for 
alcoholoxydase-containing biomass (Launt et al., 
2004).  

At first, the process is described and a 
mathematical model is proposed and then the 
control strategy is defined and the intelligent 
control structure is designed.  

Hence, a discontinuous fed-batch bioprocess for 
alcoholoxydase-containing biomass with the 
methylotrophic yeast Hansenula polymorpha CBS 
- 4732 was operated in an airlift lab - bioreactor  

The intracellular enzyme, to be separated further 
on, is used for obtaining a high-specialized kit for 
methanol/ethanol determination.  

The yeast was cultivated on a complex medium 
with (NH4)2SO4, KH2PO4, Na2HPO4, 
MgSO4*7H2O, CaCl2, yeast extract or autolysed 
residual beer yeast as organic N source and 
microelements (Fe, B, Cu, I, Mn, Zn, Mo).  
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where: ES and EM are the substrate and medium 
loss by evaporation [g/h]; ρS and ρM are the 
substrate and medium densities [g/L]; YX/S is the 
substrate conversion yield referred to the biomass 
[g dry matter/ g substrate]; μ is the specific growth 
rate [1/h]; V is the volume of the cultivation 
medium in the bioreactor [L]; X and S are the 
biomass and substrate concentrations [g/L] and t is 
the time [h], μmax represents the maximum specific 
growth rate [1/h] and KS is the saturation constant 
[g/g]. The main process parameters were: 
continuous temperature control 37oC; a minimal 
level of pO2 - 10% from the saturation 
concentration was maintained during the 
exponential growth; continuous pH control 
between 4.5-5.0 by addition of NH4OH (12.5%); 
no foam control, if the main parameters are 
optimally controlled. The unique C source, the 
methanol was introduced function of the yeast 
growth rate in connection with the substrate 
consumption rate for avoiding the growth 
inhibition by substrate concentration. The 
developed model (1) is based on the mass-balance 
principle and on the hypothesis of a non-inhibitive 
substrate effect (i.e. the specific growth rate is 
defined by the Monod equation). In line with the 
operation mode (fed-batch with discontinuous 
substrate feeding), there are discontinuous 
variations of the main variables due to: substrate 
feeding, medium feeding (to overcome the loss by 
evaporation or sample collection) or samples 
withdraws. That is why the following mass-
balance equations are to be added to express each 
discontinuous modification for volume, and 
substrate or biomass concentrations:  
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where: Vk, Vk+1= volume before / after 
modification [L]; ASk, AMk= substrate volume and 
respectively medium volume adding [L]; 
PMk=sample withdraw [L]. The same notations are 
used for Sk, Sk+1 and Xk, Xk+1. We use: ρS = 
800[g/L]., respectively ρM = 1000[g/L]. The 
identification of the model parameters was carried 
out based on measured values in order to minimize 
the modeling error. The identification procedure 
(i.e. Nelder-Mead algorithm) determines the 
optimum values for the following process 
parameters: ES, EM, μmax, KS and YX/S.  For this 
bioprocess, the overall control objective is to 
obtain large biomass quantities, based on the 
assumption that high biomass concentration will 
assure the obtaining of important alcoholoxydase-
active biomass. In this paper a control system 
based on fuzzy logic is proposed. It is well known 
that Fuzzy Control Systems (FCS) can manipulate 
incomplete and uncertain information about the 
process assuring high control performances 
(Bellgardt, 1991, Boudreau et al., 2006, Heinzle et 
al., 2006). The proposed FCS receives information 
about the state of the bioprocess expressed by the 
biomass and substrate concentrations. Based on 
this information, FCS computes the quantity of 
substrate to be added into the reactor. According to 
these observations the inputs of FCS are the 
biomass (X) and substrate (S) concentrations, and 
the output is the correction to be applied on the 
substrate addition. The rules are presented in Table 1. 

Rules evaluation by the inference engine is made 
according to the min-max inference rule and the 
output defuzzyfication is made based on the 
centroid defuzzyfication method. 

Table 1. The rule base 

 Xk 

Sk
S M L 

S Z PZ P 
M NZ Z PZ 
L N NZ Z 

 

(1) 

(2) 
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The control loop was implemented in MATLAB, 
version 6.5. For control loop simulation the 
proposed mathematical model was used and the 
simulation results were compared with the 
experimental data.  

The simulation results show that the proposed 
fuzzy control system is capable of computing the 
substrate feedings needed for cell growth 
according to the biomass concentration increase. 

The evolution of the substrate concentration marks 
the substrate consumption and additions, as well as 
the increase of the additions along with cell 
growth. The biomass concentration obtained by 
simulation follow closely the experimental data. 
As a conclusion of this case-study, it can be 
accepted that the success of such a control 
implementation is critically dependent upon the 
technical operating conditions of the process.

 

 
a) 

 
b) 

 
Figure  3. Simulation results of the control loop: a) first experiment; b) second experiment; (‘-’ – simulation results; ‘x’ 
– experimental data) 
 
  
Conclusions 

The overview on the current status of bioprocess 
modeling and control focuses on three main topics: 
(i) unstructured versus structured and metabolic 
modeling; (ii) control based on common technique 
(model based control and adaptive control); (iii) 
control based on artificial intelligence.  

It is finally to underline that the framework of 
bioprocess modeling & control still offers 
interesting perspectives to obtain robust control 
solutions for the aerobic bioprocess. Moreover the 

future of bioprocesses’ optimal control will rely on 
applying the same concept: the use of different 
modeling methods in conjunction with intelligent 
control techniques.  

If a simplified representation of the bioprocess 
exists (i.e. an a priori model), this optimal profile 
can serve as an initial trajectory for intelligent 
control algorithms when the complexity of the 
process representation is described in a subjective 
mode (by human expert).  
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